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Summary

Statistical criteria are needed by which to evaluate the potential success or failure of applications 

of small area estimation. A necessary step to achieve this is a protocol-a series of steps-by which 

to assess whether an instance of small area estimation has given satisfactory results or not. Most 

customary attempts at evaluation of small area techniques have deficiencies. Often, evaluation is 

not attempted. Every small area study requires an external evaluation. With proper planning, this 

can be routinely achieved, although at some cost, amounting to some sacrifice of efficiency of 

global estimates. We propose a Routine External Evaluation Protocol to allow us to judge whether, 

in a given survey, small area estimation has led to accurate results and sound inference.
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1 Introduction

Small area estimation is employed worldwide in many important applications, for example 

determining the allocation of funds. It has long history and a rich literature with a variety of 

ingenious techniques and well-developed theory. Already in 1979, Purcell and Kish (1979) 

were writing a review article on small area estimation. Rao and Molina (2015) give a current 

compendium of theory and methods. A recent overview may be found in Pfeffermann 

(2013).

In 1979, there was a conference on Synthetic Estimation, the prominent small area 

estimation technique of the day. At its end, Richard Royall, the pivotal figure in current-day 

model-based sampling theory, issued a warning, which, with a slight modification of terms 

might still be applied to present day conferences on small area estimation:

‘A workshop of this sort, focused on a specific technique, can spur development, but it can 

also be dangerous. The danger is that, from hearing many people speak many words about 

[small area estimation], we become comfortable with the technique. The idea and the jargon 

become familiar, and it is easy to accept that “Since all these people are studying [small area 

estimation], it must be okay.” We must remain skeptical and not allow familiarity to dull our 
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healthy skepticism. (Royall, 1979)’. (Also quoted in ‘Indirect Estimators in U.S. Federal 

Programs’ (1996) edited by Wesley L. Schaible, 1996, p. 193.)

Why would someone, this author included, who thinks the proper understanding of survey 

sample inference lies in the proper use of models, hesitate over small area estimation, a 

procedure resting as it does on the sophisticated use of models? We will suggest an answer 

in the succeeding section.

1.1 A Thought Experiment: The ‘Small Area Vise’

The enterprise of small area estimation arises because of the collision of two factors:

a. Demand by policymakers, often legally mandated demand, for estimates in each 

of many small areas. These estimates for example may be part of a legal 

framework by which to allocate resources of one sort or another to the various 

small areas.

b. Limited budgets (of money, time and energy) insufficient to collect enough data 

to allow straightforward estimation in each small area based on its own proper 

data (‘direct estimation’).

There is a general tacit assumption that these two factors are reconcilable; that while we 

would rather have recourse to sufficient data for each area to stand on its own, nonetheless, 

by adroit modeling of variables across areas, we can, by ‘borrowing strength’, meet the 

needs and demands of policymakers. But when is it not ‘borrowing strength’ but ‘borrowing 
weakness’?

Here is a thought experiment. Suppose (a) the demand increases or at least does not 

decrease and (b) the budget decreases. There is a call for ever increasing refinement in the 

estimates and there is ever decreasing resources. Policymakers having seen the 

productiveness of small area estimation, and being reassured by statisticians of its efficacy, 

cut back the budget ever more from year to year, and at the same time, like the Egyptians 

requiring bricks from the Hebrews without straw, demand more and more detailed estimates.

Surely there is a limit to how far this cycle could go on. If the resources were to dry up to 

zero, then the production of estimates would clearly be impossible (unless with a very strong 

Bayesian prior). There must be a tipping point, well before resources are non-existent, at 

which small area estimates become unsatisfactory, where for example their actual relative 

bias is beyond a bound we would regard as acceptable or associated confidence intervals are 

misleading. This raises the interesting statistical question: by what statistical criteria do we 
judge that resources are too limited to produce satisfactory small area estimates?

We do not attempt in this paper to answer this question. To answer it, we need to be able in 

general to evaluate small area projects and to have gained considerable experience in such 

evaluation. For the most part, our current experience in evaluation of small area estimation is 

inadequate. ‘The main limitation of small area methods … has been the difficulty in 

validating a particular approach for a given … problem. Standard approaches … are not 

useful … do not adequately answer the question of how well these methods work compared 

to … a large sample survey in each locality’. (Srebotnjak et al., 2010)
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The problem is exacerbated by the fact that we turn to small area estimation precisely 

because of the fact that many if not most of the areas of interest are under-sampled or not 

sampled at all. For example, Table 1 gives the distribution of effective sample sizes (number 

of in-scope households) per area (county) in a recent year of the National Health Interview 

Survey carried out by the U.S. Centers for Disease Control, National Center for Health 

Statistics. The second row gives the number of counties having sample size in the 

corresponding cell in the first row. There are 3 143 counties and we note that the vast 

majority (2 307) have no sample at all. Nonetheless, we sometimes seek local estimates in 

all the counties (e.g. Raghunathan et al. 2007).

1.2 Variety of Inadequate Methods of Evaluation

The ‘gold standard’ of evaluation has been evaluation of results against large external data 

sets derived from censuses or administrative data (cf. Rao & Molina, 2015, p. xxvi). Such 

evaluations are large scale projects and can only with difficulty be carried out on a regular 

basis. Furthermore, the comparisons they offer tend to be surrogates for what we would 

really like; for example censuses tend to be out of date and some assumptions become 

necessary to bring their data into line with what the small area estimates are actually meant 

to target.

A variety of other evaluation procedures have been used over the years, each having some 

weakness: (1) that the small area estimates are reliable, that is do not change much from 

time to time, or place to place. A uniform estimate of zero, pulled out of a hat, is extremely 

reliable; (2) that the estimates have smaller estimated mean square error than their direct 
estimation counterparts-estimation of mean square error for small areas can be precarious 

and requires its own validation. Furthermore, if the direct estimates are weak, then being 

better than weak is not reassuring; (3) that the estimates are benchmarked, that is add up to 

reliable estimates on the large areas that enfold them-this criterion does not distinguish the 

comparative worth of uniformly equal estimates from disparate estimates adding to the same 

total; (4) that the model fits [for example Pfeffermann (2013, section 8)]-the very nature of 

estimation on small areas precludes there being enough data on the typical small area to tell 

whether a particular model fits its data or not; (5) cross-validation-again because in too 

many small areas, there is insufficient data for verification purposes; (6) methods that rely 

on comparisons of just the heavily sampled small areas-these can be outnumbered by the 

many extremely sparse small areas (including, often enough, those with no data) that might 

behave quite differently; (7) large scale simulation studies from administrative, census or 

large samples-these can give useful insights but satisfactory extrapolation to the case at hand 

has to be assumed; (8) evaluation of previous small area projects that resemble the current 

one. This can give important insights but leaves us vulnerable to changing conditions; (9) the 

fact that the estimates arise from sophisticated statistical methodology or heavy computing 

power; having heavy firepower is desirable but is not self-validating by itself; (10) 

plausibility of point estimates and confidence intervals; verification by subject matter 

experts, for example can reassure but carries risks of political pressure or dissension.

The key problem is the lack of data precisely where they are needed to verify the validity of 

assumptions (for example in the 2 307 small areas lacking any sample in Table 1). This is 
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the reason a model-based sampler might hesitate to simply embrace small area estimation. 

The means to verify the model are generally too sparse or lacking over groups of areas (for 

example the smallest or rural areas) that might differ in their behaviour from the (typically 

larger or urban) areas that are heavily sampled. There can be no built-in robustness to model 

failure, as, for example that which the model-based sampler seeks to achieve through 

balanced samples (Valliant et al., 2000).

2 Towards a Routine External Evaluation Protocol

We should perhaps stress that we are here addressing the situation where small area 

estimation is anticipated. A survey is being carried out with some primary goals (for 

example efficient national estimates), but there is also the secondary goal of getting 

estimates for smaller areas where insufficient local data is anticipated.

2.1 Twin Goals: Accuracy and Sound Inference

We want to keep in mind the twin goals of the survey sample enterprise, which are the same 

as statistical estimation in general: (a) sharp accuracy (efficiency) and (b) sound inference. 

Accuracy: how close is the small area estimate to its target? Inference: does a confidence 

interval or its equivalent, derived in small area estimation typically from an estimate of mean 

square error, actually cover the target in accord with its stated coverage?

Both accuracy and inference strongly suggest the need for an external measure of 
comparison; data from outside the sample that can validate point estimates and interval 

estimates. We emphasize the need to validate confidence intervals or their equivalents. 

Validation of intervals is almost never carried out in practice and there is very little to draw 

on in the literature. Exceptions seem to be Brown et al. (2001) and Beresovsky et al. (2011).

Having an external basis of comparison does not necessarily mean an external census or 

very large alternate survey. Nor does it necessarily require verification for every small area. 

Needed is just a good representative independent sample of the set of small areas for which 

small area estimates are constructed, particularly those which the overall ‘wide area’ survey 

will have neglected. What is desirable in general is a procedure that can be done regularly 

for any survey in which the use of small area estimation is anticipated: a built-in Routine 

External Evaluation Protocol (REEP) that will enable us to evaluate the effectiveness of 

small area estimation in the particular survey at hand. This means we need to plan on such 

evaluation from the very beginning of the survey, at the design stage.

2.2 REEP Design: The Supplementary Sample of Samples

Every survey S where estimation for particular small areas is anticipated should allot a small 

portion of its resources for a supplementary independent sample SA of these small areas, 

with a particular focus on those that will be weakly (or not at all) sampled in S. Then each of 

the areas a selected into SA has a sample sa taken within a sufficiently large to enable 

construction of a good direct estimate for variables of interest in a, independently of 

estimation using small area estimation from the main sample. The purpose is comparison of 

the small area estimates to their corresponding direct estimates from the supplementary 

samples and evaluation of the small area confidence intervals.
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Let A = {a} be the set of areas for which the global sample S is expected to supply small 

area estimates. Typically, S will sample the larger of the areas a heavily, with few units 

(possibly none) sampled in the smaller a. From A, let a not very large appropriate sample SA 

of nA areas be drawn; ‘appropriate’ may mean, for example simple random sampling (srs) or 

srs within the subclass of areas expected to be neglected by the main sample S. From each of 

the areas a in SA, a supplementary sample sa will be taken of size na, where na is large 

enough that the direct estimates based on sa can be regarded as normally distributed with 

variances well estimated and not large. The direct estimates and variance estimates will then 

be available for shedding light on the corresponding small area estimates derived from the 

main sample S.

Note 1. To mitigate confusion, let us emphasize that sampling is here envisaged as taking 

place in three different ways: there is the main sample S, carried out with whatever (usually 

complex) design is called for and typically primarily aimed at estimates at levels higher than 

the small areas a; there is the supplementary validation sample SA, which supplies a 

collection of areas a; then there are the several samples sa intended to give accurate estimates 

for the areas a ∈ SA, quite independently of any data S might supply. Let us refer to SA as 

the supplementary sample or the validation sample and to the individual sa’s as the local 
samples.

Note 2: There is precedent for designing surveys that intentionally compromise large scale 

accuracy. The goal has been improved small domain estimates, for example Singh et al. 
(1994), Marker (2001), Longford (2006), Falorsi and Righi (2008), Molefe (2011), Molefe 

and Clark (2015). The message has been that a minor loss in accuracy in the principal 

estimates can afford important gains for the small area estimates. Here, the goal is different: 

evaluation of the small area estimation process itself for the particular survey.

Note 3: Once the supplementary sample has served its primary function of validating the 

small area estimates and providing diagnostics, there is nothing to prevent combining S with 

the extra data arising from SA and getting a revised set of estimates for both small areas and 

S’s primary targets. This point is discussed further in Section 4, but the implication is that 

the extra data collected can have a dual benefit.

2.3 REEP: Evaluation of Accuracy and of Inference

The data from SA can be used to produce measures that evaluate small area estimates 

(including mean square error and interval estimates) and provide diagnostic clues if there are 

indications of faulty estimation. Some information may be gained by graphing small area 

estimates against corresponding direct estimates for areas a in SA. We can get formal 

measures by getting summary statistics across SA (or suitable partitions of SA) on relative 

biases, relative absolute biases and by comparing small area estimates of mean square error 

to the squared differences between small area and direct estimates. It is important also to 

evaluate the confidence level of small area confidence intervals. We give details on possible 

approaches in the succeeding text.

Our list of techniques is meant to be suggestive, not exhaustive.
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Suppose {a} are the targets (truth) for areas a in SA. Let μa  be the corresponding direct 

estimates based on the supplementary samples, σa2  their variances and σa
2  the 

corresponding variance estimates. As is so frequently done in the small area literature, we 

shall bypass complications by assuming that σa
2 = σa2. Let μa  be the small area estimates 

based on the main sample S, τa2 , {ba} and ma2 ≡ τa2 + ba
2  their variances, biases and mean 

square errors, respectively, and ma
2  the corresponding estimates of mean square error (note 

that we take it for granted that small area estimates have a potential bias, possibly large 

relative to the corresponding variance).

If the small area estimation is working as hoped, then the average (mean) across SA of the 

relative biases μa − μa /μa and the average of the absolute value of the relative biases, 

μa − μa /μa  will be small. Looking to mean squared error estimates, we anticipate if there is 

some degree of homogeneity across the areas and if the estimates are on target, that 

nA
−1∑a ∈ SA ma

2 /nA
−1∑a ∈ SA ma2 ≈ 1 (in principle, we might prefer looking at 

nA
−1∑a ∈ SA ma

2/ma2  but this quantity tends to be unstable. (An intermediate statistic would 

be G−1∑g = 1
G ∑a ∈ SAg ma

2 /∑a ∈ SAg ma2 , where SA has been divided into G subgroups 

SAg that we believe to have internal mean squared error homogeneity.) These quantities, and 

the true confidence level of confidence intervals, depend on unknowns and cannot be 

calculated from the sample S on which the small area estimates are based. Confidence 

intervals, assumed here to be of the form ca = μa − z1 − α/2 ma
2, μa + z1 − α/2 ma

2 , where 

z1−α/2 is the 1 – α/2 quantile of the standard normal distribution, should have (1 – α) 100 

percentage or better coverage of the μa. Such intervals (based on estimated mean square 

error rather than variance) tend to be conservative, covering μa at at least the nominal 

coverage level, provided the mse estimate is on target (cf. for example Cochran, 1977, p. 

15). The situation reverses, when the confidence intervals are formed from the root of 

(estimated) variances (Särndal, et al., 1992, p. 165); for further discussion, see Appendix B.

We look to the validation sample to provide ‘mirrors’ (indirect information) on the 

aforementioned quantities and on confidence levels.

The relative bias is assayed by nA
−1∑a ∈ Sa μa − μa /μa , the relative absolute bias by 

nA
−1∑a ∈ Sa μa − μa /μa  and the ratio of estimated mean square error to mean square error 

∑a ∈ Sa ma
2 + σa

2 /∑a ∈ Sa μa − μa
2 . The σa

2 intrudes in the numerator to account for the 

sample variation in μa. We shall refer to these three quantities as ‘diag rel bias’, ‘diag rel abs 

bias’ and ‘diag mse est’, diagnostics for the relative bias, relative absolute bias and ratio of 

estimated mean square error to mean square error, respectively. We can expect that there will 

be some distortion in our ‘mirrors’ due to the sampling variability of the validation 

estimates. Nevertheless, these diagnostics can provide valuable information as to how the 

small area estimation is working, much like residuals in regression can provide information 

about the true error structure.
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The confidence interval ca contains μa if and only if ta =
μa − μa

ma2
 lies in [−z1−α/2, z1−α/2], so 

if we could calculate ta, then we could appraise the coverage by looking at the distribution of 

the ta’s across areas. But ta is inaccessible because μa is unknown. Instead, we can, for a in 

SA, calculate tdiff, a =
μa − μa
ma2 + σa2

. If σa2 is reasonably small, the behaviour of tdiff,a should be a 

good indicator of the behaviour of ta (for more discussion, see Appendix B). We can 

appraise the behaviour of tdiff,a by looking at its values across the a in SA and this can 

provide a window into the behaviour of ta =
μa − μa

ma2
.

Note 4: A summary measure of tdiff,a is the coverage pcov = P (∣tdiff,a∣ ≤ z1−α/2), which can 

be taken as the average (mean) of I (∣tdiff,a∣ ≤ z1−α/2) over all areas of concern (e.g. Group 1 

in the example later). If this is seriously less than the nominal, it will arouse concerns about 

the actual behaviour of ta. However, pcov itself is inaccessible, because we only have a 

sample SA from the areas of concern. We must rely on an estimate of coverage 

pcov = nA
−1∑a ∈ SAI |tdiff . a| ≤ z1 − α/2 . This is a random variable whose variation allows 

for the possibility of misleading evidence. The frequency of misleading estimates of 

coverage will depend on nA and on pcov. For example suppose nA = 60 and pcov = 95% then, 

assuming that pcov is binomial, the probability that pcov < 90% is about 3%. For the same nA 

and pcov = 99%, the probability of pcov < 95% is about 0.3 %. This suggests it is worthwhile 

including a look at nominal coverage higher than 95%. Also, in planning, it suggests a 

consideration in deciding how large to take nA.

3 Illustration and a Simulation Study-Modified Lahiri-Rao Populations

3.1 Fay-Herriot Model

We will consider variants of the Lahiri and Rao (1995) population, which has served as an 

illustrative basis in a great many small area papers since its inception and is based on the 

Fay-Herriot area level model (Fay & Herriot, 1979): The small area targets are μa = va + ηa, 

a = 1; : : : ; A

Here, ηa ~ N (0; ψa) a stochastic component, ψa, typically assumed unknown and va is fixed 

unknown. In the case of the Lahiri-Rao population, these components are assumed constant 

across areas: ψa = ψ and va = v. The data available from the sample S are Ya = v + ηa + εa ≡ 
μa + εa with εa ~ N (0, Da) the sampling error and ηa, εa independent of each other and 

across areas.

The sampling variances Da are typically assumed known. There has been important recent 

work dealing with the fact that they are unknown and their estimates often volatile, for 

example Bell (2008), Hawala and Lahiri (2010), Maiti et al. (2014); see also, Rao and 

Molina (2015, section 6.4.1). However, to avoid complications, we shall treat the Da as 

known in this paper.

Then we have the estimates:
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μa = γaY a + 1 − γa v, where

γa = ψ/ ψ + Da

v = ∑a
Ya

ψ + Da
/∑a

1
ψ + Da

,

where ψ satisfies ∑a
Ya − v 2

ψ + Da
= A − 1, A the number of areas in S.

This is the original Fay-Herriot estimator of ψ It has many competitors but we limit 

ourselves to it here for simplicity.

We will use estimates of the mean square errors ma
2 derived in (Datta et al., 2005); these, for 

convenience, are given in Appendix A.

We can form confidence intervals ca = μa − z1 − α/2 ma
2, μa + z1 − α/2 ma

2  that should contain 

μa in at least (1 – α) 100% instances.

3.2 A Lahiri-Rao Population and Variants

In the Lahiri and Rao (1995) population, the areas divide into five groups, where, within 

each group, samples of the same size are taken. They consider groups of small equal size, 

but we, mimicking the data in Table 1, will allow the groups to be quite large and we will 

focus on estimation in just one of them.

In our case, the sample variances within the five groups are taken to be D = (10000, 25, 4, 

0.6, 0.1), respectively. (We will follow the Lahiri-Rao notation.) The first group in Table 1 

had sample sizes = 0, which corresponds to infinite variance; to avoid programming 

exceptions, we instead simply assume a very large variance for direct estimates in the first 

group. Our focus will be estimation, inference and validation for this first group, where data 

are ‘missing’. In all cases, our working model in constructing estimates will be this Fay-

Herriott-Lahiri-Rao structure and we will use the estimates given above and in Appendix A.

We will consider four populations. In all cases, the number of areas in the five groups will be 

Ng = (1 200, 800, 500, 400, 100). From each population, we take a single sample S that 

comprises samples from all areas a; each having variance Da depending on which group g 
the area belongs to.

Population 1. Our primary population is generated according to the Lahiri-Rao formulation. 
Specifically, we take v = (16, 16, 16, 16, 16) (common mean for all areas in all groups) and 
ψ = (1, 1, 1, 1, 1) (common variance of the area deviations ηa). It may be worth noting that 
the coefficients of variation within each of the five groups are respectively

cv ≡ D/v = (6.250, 0.312, 0.125, 0.048, 0.020) .

Dorfman Page 8

Int Stat Rev. Author manuscript; available in PMC 2020 August 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



In addition to Population 1, where the postulated model coincides with how the data actually 
arises, we will consider three deviant populations.

Population 2. deviates from Population 1 only in having ψ = (4, 1, 1, 1, 1); that is the 
variance of the area deviations is larger for Group 1 than for the groups where data are 
available.

Population 3. deviates from Population 1 only in having v = (18, 16, 16, 16, 16); that is the 
fixed mean for each area in Group 1 differs from the corresponding means in the other 
groups.

Population 4. differs in structure from the others. It assumes the presence of a highly 
skewed (standard lognormal) size variable x, ordered so that the the smallest x are in Group 
1 and the largest in Group 5, and further assumes that the area means satisfy va = βxa; we 
took β = 1/2. The quartiles of x are given in Table 2.

In all cases, we took the Lahiri-Rao model as the working model and employed the estimates 

for area means and for mean square error given earlier. Thus, we expect things to work well 

in Population 1 and possibly to misbehave in the other three populations. The question is 

how well our proposed diagnostics, employing data from the validation sample, reflect the 

underlying actual behaviour of the small area point estimates, their corresponding estimates 

of mean square error and the confidence intervals constructed from these.

3.3 Results

3.3.1 Behaviour of small area estimates across Group 1—Table 3 gives the 

values of the percent relative bias, averaged over the 1 200 areas in Group 1 for each of the 

four populations. For Population 1, everything is well behaved, as anticipated: bias is small, 

on average, the mean square estimator approximates the average of the mean square error 

and coverage is on target. Each of the other populations goes awry. Population 2’s bias is not 

too large, but the estimated mean square error seriously underestimates the actual mean 

square, so that nominal coverage of intervals seriously overstates actual coverage. 

Population 3 has serious biases and underestimates mean square error, with consequent poor 

coverage. Population 4 is a bit of an anomaly: the coverage is actually conservative, despite 

there being the most serious bias. The estimates of mean square error are somehow taking 

the bias into account and tracking the mean square error.

We emphasize that none of the earlier results would be known to the analyst, because they 

all require knowledge of the unknown μa’s.

3.3.2 Diagnosis using a sample of 60 areas from each population—We take a 

single simple random sample SA of 60 areas from Group 1 from each of the populations, 

respectively. For each of the areas a selected into SA, we take a sample having variance Da = 

0.4 (so intermediate to the sampling intensity in Groups 4 and 5). For each of the selected 

areas, we calculate the diagnostics described in Section 2.3 earlier and we average over the 

60 areas. Table 4 gives the results for each population. We emphasize that these results 

would be available to the analyst.
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The results reflect the hidden reality of Table 3. The reflection is not perfect. In Population 

1, the 95% coverage is a bit low; in Population 4, the bias estimates are exaggerated. On the 

whole though, the underlying situation seems to be mirrored pretty well through these 

diagnostics. Table 4 gives averages across the areas in the supplementary sample, but one 

can also learn by looking at results for individual areas. Figure 1 plots the values of tdiff,a for 

each of the 60 sampled areas. Ideally, most of the values will be spread between −2 and 2, 

getting sparser away from 0. This holds for Population 1. Population 2 sees a greater spread 

and the indication of problems is very clear for Populations 3 and 4.

3.3.3 Multi-runs—The results in Section 3.3.2 are for a single random chosen sample of 

60 areas from the 1 200 areas composing Group 1, for each of the populations, and illustrate 

how one might go about making use of the data arising from a supplementary sample. In this 

section, we repeatedly take such samples to see how much variation there might be in our 

ability to assess the underlying situation.

For each population, we take 500 validation samples of size nA = 60 in Group 1 using simple 

random sampling. Local samples are taken with variance equal to Da = 0.4. For each run, 

summary statistics are calculated as in Table 4. Figures 2–5 show the distribution via 

histograms of each of the summary statistics for each of the populations, respectively.

In the main, the sort of indications that our single sample gave hold up across the runs.

In Population 1, none of the samples suggest anything seriously amiss with respect to bias. 

There is one isolated sample with coverage around 85% that might make us question our 

small area inferences. The mean square ratio seems the least stable of our indicators with a 

fair portion of samples suggesting that the mean square estimator is too small. The 95% 

coverage of t.diff actually leans to being greater than 95%, which is in keeping with idea that 

confidence intervals based on mean square error tend to be conservative.

In Population 2, there are one or two samples that might suggest inference is okay, but by 

and large, the coverages reflect well that our small area inferences are doing poorly. The 

mean square diagnostic points in the same direction, but there is considerable overlap with 

what was seen for Population 1. For the bias diagnostics also, a large number of samples 

would not clearly delineate between a Population 1 and Population 2 situation.

Thus, there is a suggestion that the t-diff statistic may be the most sensitive of the indicators.

Population 3 is unambiguous on all four diagnostics: relative bias is consistently negative, 

the estimated mean square error is consistently low, and the coverage gives a clear warning 

signal in all runs.

In Population 4, the diagnostics across runs mirror the mixed picture we saw in the 

population (Table 3), with often an indication of sharp bias, but satisfactory or conservative 

coverage.
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4 Discussion

Current practice in small area estimation makes us vulnerable to our using very elegant and 

persuasive techniques that leave us in the dark as to whether they are actually working in the 

particular survey to which they are applied. This is a serious matter, especially because small 

area estimates are often used to make judgments on funding and other matters important to 

the body politic.

Although sporadic attempts at validation are made, they are often flawed, relying themselves 

on judgments that embody assumptions and speculations, as described in Section 1.2.

In this paper, we have suggested that every small area estimation project should carry with it 

means for checking validity in the form of an independent sample of areas that ordinarily go 

sparsely sampled or unsampled and so institute REEP, a Routine External Evaluation 

Protocol.

The data gathered from appropriately selected small areas can in the end be incorporated 

into overall estimates, having served their main purpose of validating the small area 

estimates (Note 3 earlier).

But what if the diagnostics indicated that the model was not adequate? Should we give up on 

doing SAE for the problem? Not necessarily. The first step would be to try an alternative 

model suggested by the results of the validation study. For example if the x variable in 

Population 4 were available, we might try incorporating it into the model (although, the 

coverage being satisfactory, we might rest with the original model, despite recognizing some 

bias in the estimates, so long as the estimated mean square errors were palatable.) Where 

opportunity presents, we would make use of internal diagnostics as well. We would try an 

alternative model and do a revalidation, in the same manner as the original validation 

process. This would be iterated until we had verified a model or exhausted possibilities. If 

the former, then we would take a final step of incorporating SA into the model to get final 

estimates. If the latter, then we might have to acknowledge that in the present instance, small 

area estimation is failing.

The illustrative examples in Section 3 gave results that are cleaner than what we are likely to 

encounter in practice. To keep the examples clear, we assumed that the only set of areas of 

concern was Group 1, where the areas were essentially unsampled. If we were to include say 

Groups 2 and 3, we would expect any model failure in them to be less severe, because their 

data contribute more to the estimation of parameters, and we would therefore anticipate that 

the diagnostics will show up less sharply as well. Lesser problems might still be of concern 

but will be harder to detect.

The major questions facing us in putting REEP into practice are (1) how many small areas 

need to be sampled in our validation sample? (2) how heavily must each area in the sample 

be sampled? (3) what diagnostics based on the supplementary data will be illuminating?

(1) Taking samples of 60 areas worked pretty well in the artificial populations of this paper. 

Taking more will give greater precision in summary diagnostics. It is desirable this question 
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be explored further in a variety of practical settings. A particular concern will be to limit 

false negatives, for example low coverage using tdiff,a when actually true coverage matches 

the nominal. See Note 4 in Section 2.3 earlier.

Our criterion for (2) is that the areas entering into the supplementary sample should be 

sampled heavily enough that estimates based on the data within an area will be precise and 

reasonably assumed to follow a normal distribution. In the present paper, we took samples 

that were intermediate between those most heavily sampled in the main survey and those 

sampled more moderately. Again, it will be worthwhile to explore how various choices in 

this regard play out in practical settings.

Criterion (2) has somewhat greater importance than (1). We might still be able to learn a 

good deal if the number of areas sampled is lessened, but if the the samples from the areas 

within the validation sample are too small, our measures cannot be expected to be 

satisfactory.

(3) We explored various diagnostics dependent on the small area estimates and the estimates 

from the supplementary sample. Perhaps the most useful of these, as verifying (or not) our 

inferences is tdiff,a. We anticipate that additional measures will be developed down the road; 

Brown et al. (2001) suggest diagnostics that might prove useful in the REEP context.

We have not discussed many small area methods, for example Bayesian methods and 

quantile approaches, where doubtless some modification to the diagnostics we have 

suggested will be in order. But the basic REEP idea should apply to them.

Routine External Evaluation Protocol is analogous to quality control in industrial 

production. It carries a cost of course, one to which survey administrators may be reluctant 

to agree. At bottom, the cost is some sacrifice in efficiency in upper level estimates and in 

areas that are typically heavily sampled. Precedent for such sacrifice is testified to by the 

several papers cited in Section 2.2 that aim at increased overall efficiency including for the 

small area estimates. There will, however, generally be a trade-off between achieving overall 

efficiency and being able to set up an adequate validity protocol such as REEP. Just as there 

is often a trade-off between bias and variance, so too there is an intrinsic tension between 

efficiency and validity. In the small area estimation literature, the focus has been almost 

exclusively on efficiency. Some balance is overdue.

APPENDIX A.: Estimation of Mean Square Error under the Lahiri-Rao Model

ma2 ≡ E μa − μa
2 = g1 + g2 + 2g3 − 1 − γa

2b

g1 = ψDa/ ψ + Da
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g2 = Da/ ψ + Da
2/∑a1/ ψ + Da

g3 = 2A Da2/ ψ + Da
3 /∑a1/ ψ + Da

2

b = 2 At2 − t1
2 /t1

3

t1 = ∑a1/ ψ + Da

t2 = ∑a1/ ψ + Da
2

APPENDIX B.: Anticipated Coverage of Confidence Intervals for Differences

Let X ≡ μ N μ, σ2 , where μ is a desired target and Y ≡ μ N μ + δ, τ2  where δ is Y’s bias 

and m2 ≡ δ2 + τ2 represents the mean square error of Y.BothX and Y are taken as estimating 

μ, so that their difference Y − X estimates 0, albeit with a bias. We inquire in this appendix 

about the coverage properties of confidence intervals based (a) on the variance of Y – X and 

(b) on the mean square error of Y − X. As noted in Section 2.3, for the case of a single 

variate, it is well known that (a) will tend to have lower than nominal coverage and that (b) 

tends to be conservative. It is convenient to spell this out for the situation we address here, 

namely, the difference of two variables, each aiming at the same target, one unbiased, the 

other (possibly) biased.

For (a), we seek p1 − α, conv = P zα/2 ≤ Y − X
τ2 + σ2 ≤ z1 − α/2 , the coverage probability arising 

from a conventional confidence interval that ignores bias.

For (b), we want p1 − α, mse = P zα/2 ≤ Y − X
m2 + σ2 ≤ z1 − α/2 , the coverage probability arising 

from a confidence interval that implicitly incorporates bias into the component representing 

degree of accuracy. It is straightforward to show that 

p1 − α, conv = F z1 − α/2 − δ
τ2 + σ2 − F zα/2 − δ

τ2 + σ2  and 

p1 − α, mse = F z1 − α/2 1 + δ
τ2 + σ2 − δ

τ2 + σ2 − F zα/2 1 + δ
τ2 + σ2 − δ

τ2 + σ2 , where F is 

the cumulative distribution function of the standard normal distribution. We note that both 

expressions are scale invariant, that is unchanged if σ, τ, δ are replaced by σ*, τ *, δ* 

respectively with σ* = ∣k∣σ, τ* = ∣k∣τ, and δ* = kδ, for k ≠ 0. Thus in calculating values, it is 

enough to hold τ fixed at some convenient value, say τ = 1, and consider the effect of 
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different ratios σ/τ and δ/τ. It is worth noting also that the larger σ is (the larger the 

variability of X), the smaller the adjustment terms in either expression, and the less we are 

able to gain information about the bias and variance of Y from the distribution of 

tdiff = Y − X
m2 + σ2 . This fact is illustrated in Tables B1 and B2, based on the earlier expressions 

for p1−α,conv and p1−α,mse

The basic message is: if we properly take into account mean square error, we get more and 

more conservative as the bias increases, and as the variance of the unbiased estimator 

shrinks. If we improperly aim only at getting variance, coverage gets weaker and weaker 

with larger bias and smaller sigma.

In the small area estimation context of this paper, we use neither variance nor mean square 

error, but rather an estimate of the mean square error. If the estimate is on target, we would 

be as in Table B2,

If sigma is not large, we should get a very good picture of how well the combination of our 

estimate and its accompanying mean square estimate are doing. The two tables are not 

extremes-the estimate of mean square error can be larger than the mean square error or lower 

than the variance; nonetheless, these tables serve as guideposts and give us an idea of what 

to expect.

Table B1.

Coverage probability arising from a conventional confidence interval, for difference of 

variables.

δ/τ
σ/τ 0.1 0.2 0.5 1 1.5 2 5 10

0.1 94.89 94.55 92.12 83.11 67.96 48.8 0.13 0

0.2 94.89 94.56 92.2 83.47 68.73 49.95 0.16 0

0.5 94.91 94.63 92.68 85.45 73.13 56.78 0.6 0

1 94.94 94.77 93.56 89.1 81.45 70.7 5.76 0

1.5 94.96 94.86 94.11 91.41 86.77 80.14 20.8 0.02

2 94.98 94.91 94.43 92.68 89.71 85.45 39.12 0.6

5 95 94.98 94.89 94.56 94 93.22 83.47 49.95

10 95 95 94.97 94.89 94.74 94.55 92.12 83.11

Table B2.

Coverage probability arising from a confidence interval based on mean square error, for 

difference of variables.

δ/τ
σ/τ 0.1 0.2 0.5 1 1.5 2 5 10

0.1 95 95 95.1 96.15 97.88 99.12 100 100

0.2 95 95 95.1 96.11 97.81 99.07 100 100

0.5 95 95 95.07 95.84 97.37 98.71 100 100
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δ/τ
σ/τ 0.1 0.2 0.5 1 1.5 2 5 10

1 95 95 95.03 95.39 96.37 97.62 99.99 100

1.5 95 95 95.01 95.16 95.67 96.54 99.87 100

2 95 95 95 95.07 95.32 95.84 99.48 100

5 95 95 95 95 95.01 95.04 96.11 99.07

10 95 95 95 95 95 95 95.1 96.15
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Figure 1. 
t-Values differences across a validation sample of 60 areas from each of 4 populations.
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Figure 2. 
Populations 1. Distributions of four diagnostics over 500 runs each a sample of size n_A = 

60.
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Figure 3. 
Populations 2. Distributions of four diagnostics over 500 runs each a sample of size n_A = 

60.
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Figure 4. 
Populations 3. Distributions of four diagnostics over 500 runs each a sample of size n_A = 

60.
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Figure 5. 
Populations 4. Distributions of four diagnostics over 500 runs each a sample of size n_A = 

60.
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Table 1.

Frequency of counties having effective sample size in recent U.S. National Health Interview Survey.

Effective number of sampled units in area 0 (0,100) [100,300) [300,600] (600,900] >900

Frequency 2 307 497 251 68 11 9
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Table 2.

Quantiles of size variable x for population 4.

Minimum 25.00% 50.00% 75.00% Maximum

0.04 0.52 1 2.01 39.11
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Table 3.

Summary statistics of small area estimates for 1 200 areas lacking sample in group 1 of 4 populations.

% Relative Bias
% Relative absolute 

Bias
Mean Estimated mse/Mean 

mse
Nominal 95% 

coverage
Nominal 99% 

coverage

Pop1 −0.1 4.99 1.08 95.84 99.09

Pop2 0.96 10.17 0.27 69.92 82.5

Pop3 −11.25 11.34 0.21 48.92 74.25

Pop4 234.34 236.42 1.06 98.83 100
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Table 4.

Summary statistics for small area statistics relative to validation values for a sample of 60 areas in group 1 in 

each of 4 populations.

Diag % Rel Bias Diag % Rel Abs Bias Diag Mean estimated 
mse

“95% Cov” % |tdiff,a| ≤ z.975 “99% Cov” % |tdiff,a| ≤ z.995

Pop1 −0.51 5.41 1.02 91.67 98.33

Pop2 2.76 11.99 0.26 70 83.33

Pop3 −10.84 10.84 0.29 63.33 86.67

Pop4 2 909.26 3 631.94 1.08 98.33 100
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